

Ultra-High Energy Neutrino Astrophysics with Radio Detectors

Brian Clark

The Ohio State University

Department of Physics and the Center for Cosmology and Astroparticle Physics (CCAPP)

June 26, 2018

PGSC Summer Seminar - Department of Physics, OSU

The Big Questions

Why?	
------	--

Why Study Neutrinos: Astrophysical Messengers

Cosmic rays >10^{19.5} eV attenuated, possibly by GZK effect, e.g.

$$p + \gamma \rightarrow \Delta^+ \rightarrow p(n) + \pi^0(\pi^+)$$

→ Screens extragalactic (>100 MPc) sources

 γ -rays annihilate w/ CMB @ ~1 TeV

Why Study Neutrinos: Particle Physics Probes

- Probe cross-sections at energies above accelerators
- Ex: An EeV (10^{18} eV) neutrino interacting in ice has COM energy of ~60 TeV (note: LHC 14 TeV)

$$E_{COM} = \sqrt{4 E_{\nu} m_n}$$

COM = Center of Momentum

Astrophysical Messengers

Two Sources of Neutrinos

- Predicted "BZ Flux": pions from GZK process decay into neutrinos
- "Source Flux": Neutrinos from the CR accelerators
 - Gamma Ray Bursts (GRB)
 - Active Galactic Nuclei (AGN)

Neutrinos have attractive properties

- Weakly interacting: travel cosmic distances unattenuated
- Chargeless: not deflected by (inter) galactic magnetic field
 → point back to source!

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\rightarrow e^{+} + \nu_{e} + \bar{\nu}_{\mu} + \nu_{\mu}$$

The Big Questions

Why?

Astro + Particle Physics

How?

Where?

Who?

Neutrino Interactions

 Two varieties of interactions: Charged current (CC) and Neutral Current (NC)

CC:
$$\nu_{\ell} + N \rightarrow \ell + X$$

 $\ell \rightarrow EM Shower$

NC:
$$v + N \rightarrow v + X$$

 $X \rightarrow Hadronic Shower$

- Showers are ultra-relativistic ($\beta \approx 1$) \rightarrow emit Cherenkov radiation in dense media
- Intensity is greatest at Cherenkov angle $heta_{\mathcal{C}}$
- Two varieties of interest: optical and radio

Radio Cherenkov Effect

- Showers develop negative charge excesses
- Wavelengths the size of the bunch (~10cm) add coherently
- Broadband (200 MHz → 1.2GHz) radio pulse
- Conical emission (57° in ice)

Observation of Askaryan Effect

Has been experimentally observed in ice and salt

(a) 10^{18} 10^{19} shower energy (eV)

P. Gorham *et al.* PRL 99, 171101 (2007)

D. Satlzberg *et al.* PRL 86, 13 (2001)

(V m⁻¹ MHz⁻¹

Ш

0.01

The Big Questions

Why?

Astro + Particle Physics

How?

Radio Pulses

Where?

Who?

Question of Scale

- Low fluxes (~10/km³/yr) and low cross-sections (interaction length ~300km in rock)
- Need ~100 km³ of target volume to enable detection (e.g., dozens per year)
- Where do you find a giant chunk of radio clear medium?
 - Ask the NSF nicely?
 - Point telescope at the lunar regolith: Lunaska
 - Go to Antarctica: IceCube, ARA, ANITA, ARIANNA

LUNASKA (radio)

ANITA-III (radio) IceCube (optical)

Unnamed

('16) 🕾

2.6 PeV

Do they exist?

Yes!

Bert ('12)

1.0 PeV

- 2012: IceCube experiment sees
 PeV neutrinos of cosmic origin
- Today's discussion: neutrinos x10³ more energetic—the "UHE" regime

Ernie ('12)

1.1 PeV

The Big Questions

Why?

Astro + Particle Physics

How?

Radio Pulses

Where? Antarctica

Who?

USA:

Ohio State University
Cal Poly
University of Chicago
University of Delaware
University of Kansas
University of Maryland
University of Nebraska
University of Wisconsin – Madison

ARA is an International Collaboration

UK: University College London

Belgium: Université Libre de Bruxelles

Japan: Chiba University

Taiwan: National Taiwan University

Israel: Weizmann Institute of Science

Askaryan Radio Array (ARA)

- 16 antennas (8 vpol, 8 hpol, 200-850 MHz bandwidth)
- Cubical lattice at 200m depth
- Energy range: $10^{16} \rightarrow 10^{19} \text{ eV}$

Current Status of the Instrument

- Under phased construction in the ice near South Pole
- Phase 1 goal is ~37 stations, spaced 2km apart, covering ~100 km² of ice
- Prototype ("Testbed") + 5 (!) stations deployed so far

Construction

Construction

Construction

Signal Identification: In Hardware

<u>Impulsive</u>

- Power Trigger: integrated power over ~10ns must be > threshold
- Effective at identifying neutrinos: pulses have large integrated power

Coincidence

- Coincident requirement: trigger in 3/8 antennas
- Good at rejecting thermal noise: noise "rarely" fluctuate high in 3/8 simultaneously

-100

-50

100 Time (ns)

50

Signal Identification: In Software

Signal Must be Broad in Frequency

- Impulsive signals are broadband
- Anthropogenic backgrounds are usually narrow band (people talking on radio, for example)

Backgrounds to Signal

- Radio blackbody (thermal) emission of ice
- CW wave (CW) sources: satellites, radios, human bases...
- Electromagnetic interferneces: lights, static discharge

The Big Questions

Why?

Astro + Particle Physics

How?

Radio Pulses

Who?

What's New

New Stations

- ARA deployed two new stations (A4, A5) in January 2018
- Robustly tested: run, fully assembled, for >1 mo in the north @ UW PSL
- DAQ runs ~4 days at -40 C in thermal chamber at OSU CCAPP Antarctic RF Test Facility
- All are equipped with new, exciting electronics
 - A power-broker to improve system monitoring and control
 - Cheaper, more compact, and more flexible signal conditioning

Conditioning

Power

Rapid prototyping and testing of electronics

Pick & Place machine for rapid assembly.

Large thermal chamber.

Large RF/ anechoic chamber.

New Stations

New Stations

New Phased Array w/ A5

- ARA5 is equipped with a new phased array trigger (led by A. Vieregg @ UChicago)
- 7 VPol antennas deployed down single hole in the middle of A5
- Beamform before triggering → higher sensitivity
- Because for fixed trigger rate, threshold $\propto \sqrt{N}$

Phased Array Performance Comparison

Preliminary:
PA measurement
demonstrates
factor ~1.8
reduction in 50%
efficiency point
(expected ~2.6).

Phased Array Sensitivity

A. Vieregg et al., JCAP 2 (2016) 005

- Phased array enhances neutrino sensitivity and lowers energy threshold to ~10 PeV
- Cross-check IceCube flux
- Resolve whether IceCube is seeing a spectral cutoff

10 stations, 3 years livetime

	Station Configuration	Power Law	Power Law	Optimistic	Pessimistic
Ì			with Cutoff	Cosmogenic	Cosmogenic
ĺ	16-antenna	0.9	0.0	7.7	2.3
Ì	16-antenna, phased	3.8	0.1	19.6	6.0
Ì	400-antenna, phased	18.4	2.2	52.9	15.6

Analyses and Results

- 1. Solar Flares
- 2. Diffuse neutrinos
- 3. GRB Neutrinos

Interferometric Maps: Directional Reconstruction

- Timing information → geometry information
- Punitive source angle → Time Delay → Correlation Value for that delay
- Take Hilbert envelope to interpret as power

Interferometric Maps

- Punitive source angle \rightarrow Time Delay \rightarrow Correlation Value for that delay
- Plot that correlation value for all points on the sky, for all pairs of antennas

Solar Flare in the Testbed Prototype VPol Interferometric Map, 2:05 GMT

- Testbed activated in February 2011, detected Feb 15 X-2.2
 Solar Flare
- The V-Pol RF reconstruction peak tracks the sun across the sky (with some systematic offsets under study)
- Powerful calibration source: can confirm coordinate projection onto celestial sphere
- First reconstructable emission of extraterrestrial origin to trigger ARA — paper with details soon

Diffuse Analysis Status

Two station, four year diffuse search in the works; Led By Carl Pfender (OSU).

ARA becomes competitive with Auger/IceCube at high energies.

Phase 1 array should probe even pessimistic cosmogenic models.

Idea: reduce analysis thresholds for neutrino source searches

- A standard, diffuse searches require the strictest cuts
 - Neutrinos can come from "anywhere, anytime"
 - → RF background can come from "anywhere, anytime"

New Techniques: Motivation

- In a transient search, straightforward way to loosen cuts: restricted timing
 - ANITA-II searched for prompt neutrinos from GRBs [A. Vieregg et. al. ApJ 736 (2011) 50] 10-minute signal window, 12 GRBs in the sample

New Techniques: Motivation

- But, not every source search allows for such small time windows
- Example: afterglow neutrino fluxes
 > prompt fluxes above ~10^{17.5} eV,
 where ANITA is more sensitive
- Which is challenging, because afterglows require larger signal windows:
 - Prompt neutrino search: ~10
 min signal window [A. Vieregg et. al ApJ 736 (2011) 50, P. Allison et. al. Astropart. Phys. 88 (2017) 7-16]
 - Afterglow neutrino search: >2-3
 hrs signal window [K. Murase et. al. PRD 76 (2007) 123001, J. Thomas et. al. arXiv 1710.04025]
- So, need another way to reduce thresholds...

Searching for Neutrinos from GRBs

Some (untested) models for GRBs require the emission of neutrinos

The Goal

Develop techniques to cut on the direction of an RF source

- Need another way to reduce thresholds... RF source direction is the natural next thing
- For a transient search: cut on timing and direction
 - Enables wider timing windows
- For steady-source search: cut on direction only

Oindree Banerjee working on afterglow neutrino search in ANITA-III

<u>Prediction for Improvement</u>

- Case study: exponential background model
 - Used in:
 ARA diffuse search
 ARA GRB search
 ANITA-III diffuse search
- Models background with an exponential
 - Plot is distribution of the final cut parameter in the data
 - Line is exponential fit to the data:

$$\frac{dN}{dx} = ae^{-bx}$$

 Background estimate: integrate model from cut value x_i to infinity

$$N_{\text{back},i} = \int_{x_i}^{\infty} ae^{-bx} dx = \frac{a}{b}e^{-bx_i}$$

Prediction for Improvement (cont.)

- For a search, have:
 - Background prediction: N_{back}
 - Neutrino efficiency: $N_{\text{pass}}/N_{\text{predicted}}$
- Question: with a cut on timing/direction, and a fixed $N_{\rm back}$, how much can we loosen our final cut parameter?
- Suppose we reduce the number of events after directional restriction by a factor $\alpha > 0$: $a_{\text{new}} = a_{\text{old}}/\alpha$
- We can predict the reduction in threshold:

$$x_{\text{old}} - x_{\text{new}} = \frac{\ln \alpha}{b}$$

Prediction for Improvement (cont.)

What α might be possible?

- Example:
 - Simulate flux of 10¹⁸ eV neutrinos
 - Do interferometry on every (w/ 300 m source distance hypothesis)
- Given this:
 - Might expect $\alpha \sim \frac{20,000 \text{ deg}^2}{1,600 \text{ deg}^2} \sim 12$
 - Which is is a reduction: $x_{\rm old} x_{\rm new} \sim 0.5$
- Don't forget: signal events are steeply falling distributions of x_i . Small reductions in x_i significantly affect neutrino acceptance.

Ongoing Work

- Systematic Uncertainties on Reconstruction Algorithms
 - Ice modeling: what is n(z)
 - Geometry calibrations
- Need a way to determine where on the Cherenkov cone a candidate signal might be
 - Can look at VPol vs HPol signal strength (polarization)
 - And frequency information (spectral slope, etc.)
 - Both will require a more complete understanding of antenna response

Application to new ARA GRB Study

- Utilize IceCube catalog for all GRBs occurring in the four year (2013-16) two-station (A2, A3) livetime currently undergoing a diffuse analysis
- Require events be in the ARA field-of-view: $-5^{\circ} \rightarrow 45^{\circ}$ in elevation
- Sample has 391 GRBs (without accounting for system livetime)

DEPARTMENT OF PHYSICS .

NSF funded workshop for high school women

Hands on projects

ASPIRE

with Mathematica.

26 June 2018

Check us out! u.osu.edu/aspire

Summary

- Neutrinos are a key messenger to the distant, high energy universe
- ARA has two new stations with more in-situ control than every before, enhancing detector operational efficiency.
- Phased array prototype on A5 demonstrates improved sensitivity and the power of phased triggering
- Restricting on direction of an RF source should enable reduced thresholds in point source searches.

The Connolly Group and my research is generously supported by:

- NSF GRFP Award DGE-1343012
- NSF CAREER Award 1255557
- NSF Grant 1404266 and NSF BigData Grant 1250720
- The Ohio Supercomputer Center
- The OSU Department of Physics and Astronomy
- The OSU Center for Cosmology and Astroparticle Physics
- US-Israel Binational Science Foundation Grant 2012077

Thanks!

Questions?

The Connolly Group and my research is generously supported by:

- NSF GRFP Award DGE-1343012
- NSF CAREER Award 1255557
- NSF Grant 1404266 and NSF BigData Grant 1250720
- The Ohio Supercomputer Center
- The OSU Department of Physics and Astronomy
- The OSU Center for Cosmology and Astroparticle Physics
- US-Israel Binational Science Foundation Grant 2012077